Tourism, slow consumption and slow tourism

Presentation to The Business of Sustainable Tourism: past, present and future research symposium
Curtin University, Western Australia, 18 February 2013

C. Michael Hall
University of Canterbury, New Zealand
michael.hall@canterbury.ac.nz
http://canterbury-nz.academia.edu/CMichaelHall
The concept of sustainability in tourism is incredibly successful

• Innovation and diffusion of the concept over time
 - modern origins in late 1980s
 - From two academic papers in 1989 to >60 in 2009
 - A dedicated journal, numerous dedicated texts and courses
 - Widespread adoption of the term in government at all scales, industry organisations, individual firms and non-government organisation policies and statements
 - Is has become a part of the lexicon of business and of governments, especially with respect to the policy context within which they operate
UNWTO forecasts

Tourism Towards 2030: global projection and sensitivity analysis

- Actual data 1980-2010
- Transport costs continue to fall (scenario 3)
- Central projection
- Faster rising cost of transport (scenario 2)
- A slower-than-expected economic recovery and future growth (Scenario 1)

International Tourist Arrivals, million

Source: World Tourism Organization (UNWTO) ©
Yet... tourism is less sustainable than ever

• In environmental terms:
 - More emissions in absolute terms
 - Greater resource use (energy, land use, water)
 - Contribution to biodiversity loss / species introductions

• But then we keep being told... “one of the world's largest industries, employing more than 235 million people worldwide and generating some 9.2% of global GDP” (WTTC website)

• The growing contribution of tourism to environmental change while simultaneously being promoted as a means of economic growth suggests that sustainable tourism development is a significant policy problem. Maybe even a policy failure? As presently constituted tourism is not a form of green growth.

• Hall (2010): “much tourism growth, as with much economic growth in general, is already uneconomic at the present margin as we currently measure it given that it is leading to a clear running down of natural capital”.

• Tourism is experiencing an enormous environmental subsidy
Interest in ‘Slow’

• Influence of the “eco-gastronomy” of Slow Food on tourism – focus on conservation of the diversity of food and taste, artisan and traditional products

• Slow travel: “Holiday travel involving shorter trips (distance) and longer stays (time) where air transport is rejected in favour of less environmentally damaging forms of overland transport which become incorporated as part of the holiday experience” (Dickinson 2009)

• Use as a marketing tool for destination promotion as a synonym for more relaxed travel
Alternative tourisms

• “alternative tourism” (Tangi 1977; Derno 1981);
• “community tourism” (Murphy 1981),
• “sustainable tourism” (Ap & Var 1990; Stevens 1990)
• “ethical tourism” (Hall & Weiler 1992)
• “responsible tourism” (Wheeler 1990)
• “just tourism” (Hultsman 1995)
• “metatourism” (Kariel & Draper 1990)
• “sanfter tourismus” [gentle tourism] / “soft tourism” / “tourisme doux” (Danz 1985; Krippendorf 1987)
• “appropriate tourism” (Singh et al. 1989)
• “ecotourism” (Hemmi 1982; D. Hall 1984)
• “slow tourism” (Matos 2004)
• “steady-state tourism” (Hall 2009).

Although terms do experience a loss of conceptual power over time they do highlight that a) there is a long tradition of ‘concerned’ tourisms and b) despite academic and even policy success, and becoming part of tourism policy discourses, tourism is clearly less sustainable than ever. SO WHAT ARE THEY AN ALTERNATIVE TOO?
Sustainable tourism policy

• In tourism policy terms, sustainability is primarily seen as ‘environmental’ and development as ‘economic’ (and to a lesser extent ‘social’) and sustainable tourism aims to mitigate the potential paradox between them.

• As usually portrayed the sustainable development concept suggests that contemporary economic development paradigms are able to cope with environmental crisis without fundamentally affecting existing economic relationships, e.g. focus on green economy, green growth, e.g. the work of influential organizations in international tourism policy networks such as the World Economic Forum, the UNWTO, and the WTTC.

• From a policy perspective an alternative description would be, ‘hey, let’s develop yet another: set of indicators / policy statement / self-regulatory body / industry code of conduct – but please don’t regulate the industry [or make us pay for our emissions] more approach’... let’s focus on technology instead. But

• “Policy instruments are seldom ideologically neutral... distributionally neutral... [and] ...cannot be neatly separated from goals” and instead tend to reflect the values of the policy paradigms within which they are selected (Majone 1989). SO WHAT DOES IT SAY ABOUT OUR VALUES OR THE DOMINANT PARADIGM OF TOURISM RESEARCH?
Conceiving sustainable tourism ‘standard model’

SOCIAL GOALS
- community benefits
- participation
- planning
- education
- health
- employment
- visitor satisfaction

ECONOMIC GOALS
- economic benefits to locals and other stakeholders
- economically viable industry

COMMUNITY BASED ECONOMICS

SUSTAINABLE TOURISM
- resource benefits
- minimal resource degradation
- acceptance of resource values
- matching of supply and demand

ENVIRONMENT ECONOMY INTEGRATION

ENVIRONMENT AND RESOURCE GOALS

CONSERVATION WITH EQUITY
Alternatively: Reallocation of natural capital from natures economy to human economy in the process of economic growth

Source: Adapted from Hall, 2010
ECO-EFFICIENCY

More productive use of materials and energy.

Increased Product Life Spans

Changed Consumer Behaviour

SLOW CONSUMPTION

Changed consumption patterns leading to reduced throughput of products and services and less energy.

SUSTAINABLE CONSUMPTION

Reduction in personal demand. Fundamental change in demand to emphasise ‘local’ destinations, short supply chains and reduce resource consumption and distance travelled: ‘Reorientation’. Recessionary if implementation if used in isolation from other measures.

Source: After Hall 2009
Growth vs development

• Growth refers to the quantitative increase in economic output, whereas development refers to an increase in the quality of output without an increase in material and energy use.

• Efficiency: ‘green growth’, reducing throughput on a per capita/per unit basis. Tourism is aiming to do this approx. 1.5-2% per year – on year.

The nineteenth-century economist, William Stanley Jevons, noted in “The Coal Question” that every increment of additional efficiency in coal extraction and utilization was met with an increment of additional coal extracted and consumed. “Jevon’s Paradox” helps illustrate the chicken-or-egg nature of economic growth and technological progress. As long as economic growth is the goal, technological progress will not result in biodiversity conservation; rather, an expansion of the human niche and the consumption of more natural resources will result (Czech, 2006: 1563).
REBOUND EFFECTS

Financial re-bound effects refer to cases in which an increase in energy efficiency results in an income gain and hence in new consumption, e.g., the income effect may be triggered if petrol costs fall by 50% when a driver switches from a six-litre to a three-litre car and releases money for increased energy use in other areas – whether for additional journeys or for other goods and services that also consume energy.

Material rebound effects explain how the manufacture and use of more efficient technologies can be accompanied by greater use of energy, e.g. to produce efficient building insulation products or to develop new infrastructure and markets for energy-efficient products.

Psychological rebound effects explain how the shift to energy-efficient technologies can also boost the symbolic meaning of these goods and services, e.g., Japanese study shows that a year after purchasing what they considered to be an ‘environmentally friendly’ car, drivers who bought such cars were driving 1.6 times as far as they had done with their previous vehicle.

Cross-factor rebound effects illustrate how increasing the productivity of labour or capital can also increase the demand for energy, e.g. through mechanisation and automation that uses energy or if the use of energy-efficient technology also involves a time saving.
Assessed as...

Three types of rebound effects are frequently identified in the literature.

1. **The direct rebound effect**, which is manifested in increased demand for the same product or service. For example, the switch from a 6-litre to a 3-litre car may result in additional journeys being made in the 3-litre car.

2. **The indirect rebound effect**, expressed in increased demand for different products or services. For example, the change from a 6-litre to a 3-litre car may result in consumers taking more holidays by air.

3. **The structural or macroeconomic rebound effect**. For example, because more consumers drive 3-litre cars, overall demand for petrol is lower, causing relative prices to fall and creating an incentive for increased demand for energy-using products in other sectors.

- The level of a rebound effect is generally defined as the percentage of an efficiency-boosting measure/technology that is offset by a rise in demand.

- The 50-50 rule of thumb:
 - ‘in the long term and on average, combined rebound effects of at least 50% must be assumed. In other words, energy efficiency improvements in an economic system will on average yield half the theoretical savings potential of efficiency technologies and measures’ (Santorius 2012).
How large?

• Barker et al. (2009) modeled the potential long-run rebound effects resulting from the global energy efficiency measures incorporated into the IPCC’s 4th Assessment Report and estimated that

 – for transport there would be a worldwide direct rebound of 9.1% in 2020 and 9.1% in 2030, and a macroeconomic rebound of 26.9% in 2020 and 43.1% in 2030. The total rebound effect for transport is 36.0% in 2020 and 52.2% in 2030.

 – Residential/services buildings have an even higher estimated total rebound of 44.3% by 2020 and 60.6% for 2030. The estimated total global rebound effect on the IPCC’s] estimates is 31.5% of the projected energy savings potential by 2020, rising to 51.3% by 2030.

• If applied to tourism this means that by 2030 the impacts of energy-efficiencies on emissions reduction will potentially be more than halved and that the reduction in the total potential gains in energy efficiencies over the period to 2035\(^1\) are cut by more than 35%

1. see Gössling presentation slides for forecast energy efficiencies
The limits of containment

- **Efficiency standards** for appliances or production processes harbour the greatest risk of evoking rebound effects.

- Real income gains and falls in market prices that arise from efficiency increases can theoretically be absorbed by ecotaxes. However, this would require a complex taxation scheme with sector- and product-specific tax rates, which would be difficult to implement (e.g. the EU travel tax).

- In theory rebound effects cannot arise if resource use is limited by caps (absolute upper limits). However, unless caps are introduced globally, rebound effects can still occur via international trade and increased imports – including tourism.
An alternative conceptualisation of sustainable tourism

- Grounded in ecological economics
- Looks to develop a steady-state approach, related to sustainable consumption/sufficiency approaches, that pays attention to the systemic effects of tourism
- Examines opportunity costs and rebound effects and does not regard economic growth as a good indicator of development. Use of a broader set of economic, social and environmental indicators as part of a quality of life approach
- Reduce, reuse, recycle and regulate (also including taxing and charging for running down and damaging natural capital, i.e. polluter pays) as market mechanisms, nudging and social marketing to persuade appropriate behaviour is insufficient
- In some cases international or long-distance tourism might not even be considered as a development option
<table>
<thead>
<tr>
<th>Approach</th>
<th>Scale</th>
<th>Understanding of decision-making</th>
<th>consumption is...</th>
<th>Tools to achieve sustainable consumption</th>
<th>Dominant forms of governance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilitarian (consumer sovereignty; green economics)</td>
<td>individual</td>
<td>Cognitive information processing on basis of rational utility-maximisation</td>
<td>The means for increasing utility</td>
<td>Green labelling, tax incentives, pricing (including carbon trading), education</td>
<td>Markets (marketization and privatization of state instruments)</td>
</tr>
<tr>
<td>Social & psychological (Behavioural economics / green consumerism / ABC model)</td>
<td>individual</td>
<td>Response to psychological needs, behaviour and social contexts</td>
<td>Satisfier of psychological needs; cultural differentiator; marker of social meaning and identity</td>
<td>Nudging - making better choices through manipulating a consumer’s environment</td>
<td>Markets (marketization and privatization of state instruments)</td>
</tr>
<tr>
<td>Systems of provision / Institutions (degrowth, steady-state tourism)</td>
<td>Community, society, network</td>
<td>Constrained / shaped by socio-technical infrastructure and institutions</td>
<td>Routine habit, inconspicuous rather than conspicuous</td>
<td>Short-supply chains, local food, local tourism</td>
<td>Hierarchies (nation state and supranational institutions)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Communities (public-private partnerships, communities)</td>
</tr>
</tbody>
</table>
Achieving sustainability

• Recognise the fundamental role of natural capital – if sustainable tourism is only defined with respect to ‘balance’ it will invariably lead to a decline in natural capital. Balance is policy code for compromise... but it also means compromising natural capital.

• Understand the nature of the tourism system – if you just define sustainability with respect to an operation or even a destination and leave out people’s mobility you will never achieve sustainable tourism. With respect to climate and environmental change this is a fundamental scale effect which most researchers or policy makers either miss or deliberately ignore and is critical for long-haul market destinations.
Achieving sustainability II

• Pleonexia (the insatiable desire for more) – many tourism businesses and ALL tourism destinations have a focus on growth without full consideration of the effects on natural capital. More does not mean better, and growth does not mean development.

• Do you really think that a destination scenario in which absolute growth in emissions [and other impacts] as a result of tourist growth exceeding efficiency gains can be described as green growth or a green economy or even as being sustainable? [And that’s not even including the rebound effects!] BECAUSE THAT IS WHAT GOVERNMENT, INDUSTRY AND ACADEMICS ARE DOING!?
Achieving sustainability III

• Slow tourism (like some other alternative tourisms) may help with its focus on non-aviation transport and local travel. But it is a niche product and market and may eventually become greenwash.

• Efficiencies, nudging and the market only go so far – the systems of provision within which we consume tourism have to change

• Polluter pays/No environmental subsidies. Efficiency is fine but you need ecotaxes and caps as well as the provision of alternative transport and other infrastructures.

• Yet reducing the extent of aviation-based long distance travel is not all bad for the tourism industry – people will still travel though not so far [There is no right to international travel]
Achieving sustainability IV

• Achieving sustainability requires a change in thinking by stakeholders and access to non-standard paradigm knowledge.
• Innovation and knowledge is increasingly seen by governments and universities in the context of something that can be patented or copyrighted and that they can earn money from.
• Yet how does this fit into notions of sustainability or even services? Sustainability needs to be understood in a wider social, economic and environmental innovation context that promotes social, environmental and policy entrepreneurship.
• But such innovative thinking does not sit well in business school and university models that are increasingly more focused on accreditation, consulting, rankings, and meeting business or government agendas than encouraging counter-institutional thinking and extending debates and options.
• But if universities and researchers cannot do and think other then how can we expect governments, business, entrepreneurs, consumers and our students to do so?